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ABSTRACT

This paper deals 4ith he first b$rary problem a9socia"• with the
fully nonline equati n ut= Min{(*,Au) on the set (D, x ), where ., is
a domain of R and W( is a qiven obstacle such that ,tQ on
Formulatinq t e problem (occurrinq in heat control) as an Evolution.
Variational Inequality, H. Bre obtained the existence and uniqueness of
weak solutions in the space as well as weak converqence to an unknown
equilibrium point of the equat on.(when t qoes to infinity). The stronq
convergence of the solution to th4 zero equilibrium point is shown here,

\-.' provided the obstacle is positive and suhharmonic. If in addition
•X) L)9 e->,0 then the asymptotici behaviour is completely described _n the
sense t_6t the solution satisfies ýhe linear heat equation u-= on tIll-,.6 ' , .. -- t I

(T," "\T-* being a finite thme. To do this the results are first
pres Jnted f Jr ronq solutions (that is, those which satisfy the equation

a.eA. rhe fact that under more re ularity on the initial datum the weak
so tion i also a stronq one and cortain useful comparison principles are
pr ved b. sinq ýhe theory of accretive operators in Banach spaces.
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SIGNIFICANCE AND EXPLANATION

Problems arising in heat control theory are often modeled by Parabolic

Variational Inequalities (PVI) (see G. Duvaut-J. L. Lions [16]). One example

of such problems, considered in this paper, corresponds to the cage where the
N

temporal temperature variation of a body or fluid A of R is not allowed

to be greater than a given positive function (called "obstacle").

In an earlier work [8), H. Brezis has proved that the PVI arising in such

a situation can be formulated as an abstract Cauchy problem on the space

H 0,and he obtained the existence and uniqueness of solutions by means of

the theory of maximal monotone operators. Using this theory, he also proved

in (8) that the solution converges weakly in H1 (nl) to an equilibrium point0
when t goes to infinity. Similar to other nonlinear evolution equations,

there exists a larqe set of such equilibrium points. An important question is

to decide how the solution selects an equilibrium point among all them and

whether the convergence to it also holds in the strong topology.

in this paper some answers to both questions are qiven by setting the

problem in a different framework. It is easy to see that solutions being more

regular ("strong solutions") satisfy a fully nonlinear parabolic equation.

Such strong solutions are obtained via a "dual" problem that is shown to be

"well possed" in L (f)in the sense that the accretive operators theory can

be applied, assuming that the obstacle is sufficiently smooth. It is also

shown that the "direct problem" 1,4 well possed in L (n) for more reqular

obstacles.

Adapting a curious comparison result of Ph. Benilan and J. I Diaz ((31)

some estimates are obtained. Finally it is shown that the solution converges

strongly in H (0l) to the zero equilibrium point when the obstacle is assumed
0

to be a subharmonic function on ni. If in addition the obstacle is strictly

positive, then the asymptotic behaviour is completely described because it is

s hown that the solution verifies the linear heat equation after a sufficiently

large time Too Different results on the strong convergence and the selection

of the equilibrium point are also given.

The responsibility for the wordinq and views expressed in this descriptiveI summary lies with MRC, and not with the author of this report.



ON A FULLY NONLINEAR PARABOLIC RQUATION AND
THE ASYMPTOTIC BEHAVIOUR OF ITS SOLUTIONS

J. Ildefonco Diaz*

* I4 Ii. INTRODUCTION

SLet 1 he a smooth bounded domain in aN. Given j C. L2(0) with t ) 0 a.e. andU
u0  H'(0) we consider the problem of findinq a function u(t,x) satisfying

rut oMin('u} on (O,) x 0

S(1) 0 on (0,-) x 80
F' ruOx u x) on 91

Such type of problems occur in heat control (see [161, Chap. 2). Formulations as (1)

also appear in a non-standard statement of the Stefan problem (see later Remark A.1) as

well as in some particular case of the so called Bellman's equation of Dynamic Proqramminq

(see Remark 5).

Problem (1) can be expressed in a weak form by means of the following Evolution

Variational Inequality

ut Q K, K = G C H1 (Q) v 4' a.e. on
t0

(2)
f ut(v - ut)dx + f qrad u'qrad(v - u )dx ) 0 V v G K and t > 0n t

The existence and uniquene3s of a solution of (2), for each u0 Q H (0), was proved by H.
00

Brezis in [8] (see also [51). Also the asymptotic behaviour is considered in [8] by means

of the abstract result on asymptotic behaviour of solutions of evolutions equations. It is

shown there that u(t,x) converqes weakly in H (Q), when t + ¶, to a function
0

*Universidad de Santander and Universidad Complutense de Madrid, SPAIN

Sponsored hy the United States Army tunder Contract No. DAAG29-80-C-0041.

iiJ



u., N) H I~(n) satisfying -
(3) Min(Au.,*) *0 on Q

in the sense that

(4) fqrad u~grad vdx 0 V v 9K.-

-4i~ *iNevertheless it is neither known how the solution select. an equilibrium point amonq all of

them nor if the converqence also holds in the stronq topoloqy of H (0). Both questions0

were proposed in (8) and they are, essentially, the main aim. of this work.

Our methods for the study of the asymptotic behaviour are based on considerations made

in terms of strong solutions i.e. solution. which satisfy (1) a.e. Because of this we will

first consider some reqularity results. On this respect it is not difficult to see that if

the solution u of (2) is such that hu~t,*) 6 L(1(f), for t >0, then u is a strong

solution. Nevertheless not every solution of (2) is a strong solution. For instance, when

0 E and uo is such that Au 0  0 in DIMA) it can be directly verified that

u,(t,x) - u (x V t > 0 and then u is a stronq solution iff Au G L I(Q). We shall
0 0

¶ ~~2 1show that if * 9 H (n) with (-A*i)- 6 L 'Pl) and Au 06 L (Athe solution of (2) is a

strong one and catisfies Au G C([0,in) 2 L (A)). (A stronger regularity result will also

be obtained when *' 6 C 2(M) and Au 6 Q A)

The main result in our study of asymptotic behaviour of the solutions shows the stronq

convergence, in H 1(0), of the solution to the equilbrium point zero provided #' > 0 and

A*) 0 a... on A1. If in addi -ion *(x) 8> 0 a.e. x 6 A1 (for some 8) then the

asymptotic behaviour is completely described in the sense that we show the solution

verities the linear heat equation ut . Au on (T),) x A1 for an adequate finite time

TO. Other answers on the stronq converorence and the selection of the equilibrium point are

also given.

The essential tool in our treatment of (1) is the consideration of the "dual" (or

adjoint) problem

-2-
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vt(t,x) - Ao(x,v(t,x)) - 0 on (0,-) X at!
P* 1(x,v(t,x)) a0 on (0,0) x an

v(0,x) v Vo(x) on 11

where

(5) B(xr) - -min{((x), - r} a.e. x Q 0, V r Q R

The existence of solutions of P* in L1 (0) implies the existence of stronq

solutions of (1) using the relation v - -Au. The former question, that is the

Sexistence of solutions of P*, has been very much studied recently but, as far as we know,12
the term O(x,r) (a maximal monotone graph of R2  for a.e. x 6 0) is always taken in

the following two cases: a) 1(x,r) is independent of x, b) O(x,r) is onto a.e.

x Q Q (191). Notice that the O(x,r) qiven in (5) is neither in case a) nor in case

h). Anyway, usinq the theory of Variational Inequalities we shall show that P* is a

"well posed" problem in L1 (1) when * 6 H 01) and (-A*) 6 L2 (9).

The strong solutions of (1) satisfy

1t (t,x) + O(x,-Au(t,x)) - 0 on (0,=) x S1

P u(t,X) - 0 on (0,w) X ail

u(Ox) = u (x) on U

with 0 qiven by (5). We shall show that P is "well posed" on L*(Q) when Q 6 C 2(a);

then it is possible to obtain more reqular solutions of (1). (P has previously studied in

Benilan-Ha [4) when O(x,r) is in case a) or b)).

This paper is planned as follows: In Section 2 the existence of strong solutions of

(1) is proved when *D G H1 (9) and A* is a measure such that (-A*)- 9 L2 (Q); besides,

such solutions are shown to be more reqular if * G C2( M). The arquments of duality

( 1)Duality arquments have already been used in G. Diaz-J. I. Diaz [141.

-3-
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between (1) and P* are also presented. In Section 3 we show several comparison results

of different nature. Finally, in Section 4, the asymptotic behaviour is conside;red.

Some results of the theory of evolution equations qoverned by eccretive operators in

Panach spaces are used through the paper. In bpveral appendices we present a summary of

the abstract theory as well as the proofs of the fact that the abstract hypotheses are

satisfied when problems P and P* are studied as abstract Cauchy problems on T(, ) and

Ll(fl) (or H (a)) respectively.

42. ABOUT THE RPGULARITY AND THE DUAL PROBLU4.

In the following it is useful to recall the essential part of the proof of the

] existence and unioueness of solutions of (2) given in (8). It is based in the fact that

11
(2) can be equivalently formulated as

(6) f grad u*qrad(v - u )dx + •o(v) - •(u ) 0 V v 6 HI(0) and t > 0
St t 0

where '0 is a convex l.s.c. function defined on H (0) by

0I

f IvI2d
(7) (v) if v

if v 6K .

Introducing the conjugate convex function of 0 by

(8) (x) - sup {f qrad x.qrad y -(y)}

inequality (6) can he written as -u Q ao(u t) or equivalently

(9) ut - aS*(-u) 3 0.

By the theory of maximal monotone oerators on Hilbert spaces ([71) it is known that for

anv u),u 0 u P(-pH*(-0)) there exists a unique solution

-4-
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(10) u(t) 9 r(-;*( -.)) for any t > 0 (2)

Finally by the results of [51 (Proposition 11.10 and Lemma 11.7) we have that D(-•@(-.))

is a dense set inH (Pi). So the result of [8] follows.

As it has been pointed out in the Introduction we are interested on the solutions of

(1) that satisfy it a.e. Such functions will be termed stronq solutions of (1) in contrast

to the solutions of (2) or weak solutions. The following lemma enlightens the connection

between weak and strong solutions.

21
Lemma i. Let 9 L 01) with 0J o a.e. and let u 6 C(10,U) H M ))
1be such that Au~t) Q L (a) a.e. t > 0. Then, u is a weak solution1cc 0

of (1) iff U is also a strong solution. m

Proof. Suppose u is a weak solution of (1) such that Au(t) Q L (n) a.e. t > 0.

Taking v - ut + C in (2) with t Q D (n), a simple integration by parts shows that

u (t) W Au(t) a.e. and also that u is a strong solution of (1). On the other hand, if
t

U 6 C([0,0) H (al)) r) W 'o(0,' H (0)) satisfies (1) a.e. it it clear that u 6 K and0 1occ 0 t

also

-&u-(v - u) > -U (v - Ut) a.e. on 0 for &.a. t > 0, V v Q K

Then it is enough to apply Lemma 2 of Brezis [6] to P - -Au, w - v - ut,

h = g - -ut*(v - u ) and remark that (F,w) f f grad u-qrad(v - u )dx. a
t t t

A first answer about the regularity of the weak solutions of (1) is the following.

Theorem 1. Assume Q 6 H (l) such that ' ) 0 on Q and (-A*)- G L (2 . Let

u6 H (n) with Au0  L (Q). Then the weak solution u of (1) satisfies

Au 6 C(10,-) : L (9)).

As we have said in the Introduction, the proof of Theorem I comes essentially

considering the problem P* (when 8 is given by (5)) formulated as an Abstract Cauchy

one on the LNf) space

we identify M(t,-) with u(t).

--5--
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11 + AV 9 0 in L(1), on (0.")dt

v(O) -v0 V

A beinq the operator on L1 (n) qivan by

D(A) ( { L (n) I B(xv(x)) W I(0) and AS(xW(x)) Q L (0))
0jAW --.&B(*)) if W ) D(h)

The following result is proved in Appendix 2.

Proposition I. Assume * 9 H (A) much that * ) 0 on A and (-A*)- 0 L(•(). Then for

every v0 9 L (A) there exists v 9 C( 0,-) 1 L(1 1)) unique L (I) semigroup solution

[ of P*.

A first duality result in given by the next lemma.

Lemma 2. Assume 4 6 H (0) such that 4 ) 0 on fl and (-A)") 6 L2(0). Let B the

operator on the HM(fl) space qiven by

(13) 3(2) - -1*(-8) y 8 6 0(-Si*(-,)) 1 D(3) .

Consider b Q D(D) such that -4b 9 1,(n)( 3 ), Denotinq a - (I + AA) (-Ab) for every

S> 0, then a 0 L2 (n) and (.-A)-a - (I + AB)D b.

Proof. The definition of a implies (for instance when X - 1)

a(x) - 40(xa(x)) - -tAb(x) on n
(14)

((x,a(x)) " 0 on 80

An it is seen in Appendix 2 (Lemma A.4.) the previous problem can be formulated as a

Stationary Variational Inequality. Then the conclusion a 6 L2 (0) comes from the

2 -1hypotheses on *. On the other hand, as L2 (fl) C HI (n) then

)a - b* ( H10) r R 2(0) and

(15) b*(x) - b(x) -Min{(x),Ah*(x).

From (15) h* - h 9 K and besides

(3)For simplicity in the notation we identify -A with the .7-onical isomorphism A
from H•(i) onto its dual H'l(2).

-6-
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b*(x) - b(x) - Ab*(x) a.*. x Q Nx Q , (h*(x) - h(x)) < x(x))

b*(x) - b(x) C Ab*(x) a.e. x 6 x U flN (h*(x) - h(x)) O W(x)}

Then, for evpry v 6 K we have

f(-Ah* + (b* -b))(v - (b* -h))dx 0

and inteqratinq by parts

f arad b*'qrad(v - (h* - b))dx + O(V) - 0(b* - b) N 0

namely -h* 6 00(b* - h) i.e. b* + B(b*) a h. U

We are ready now to prove Theorem 1.
Proof of Theorem 1. From Proposition I it is enougsh to show that if u is th,, weak

solution .mf (I) then -Au(t) coincides with v(t) the unique L (Q) semiqroup solution
FA

of P* corrcipondinq to the initial datum v. - -Au- u It is done in two stew, a)

u 0 t(n) n H2 () and h) u0  in the qeneral came.

Case a). By definition v(t) u lim vn (t) where vn(t) are piecewise constant functions
Sdefilned by vnit) =an for kXn 4 t < (k + 1)%n ak n D(A) satisf~yinq

n nia

a ak-1 + Aa - 0 k -1,...,n

n Au
n 0

and An > 0 heinq such that Xn < 0. It is clear that an n (I + A)-n (-AU and then 4 ;

n n k n nn, 2 n1 )-nu
C L 2 1n) because of Lemma 2. Defininq b k (-A)Ia k, bk , (I + XB)nu0  holds.

-1 nTherefore by definin u (M (-A)- Unt) h for kX ( t < (k + I)) we haven n k n n

-Au(t) m -A(liia U (t)) lim(-AU (t)) - lim vn t) - v(t)
n n

for the m-accretiveness of 'A in H ()
0

Cage h). Lot u Q Ht,(n) n H'(n) he such that Aui AU in LI () as well as in

H0)in) (ohviouqlv then un, • 0  In H 1(n)) when m • . A% the qeinirroup cgenerates

0I



by a in continuous on m ([n) it follows that u1t M u(t) in M, (A) (then

AuM(t) + Au(t) in H- (n)), beinq u, and um heinq the solutions of (1) for the

initial datum U0 and Uo,m respectively. Analoqously, by the continuity in L i(n), of

the semiqroup oenerated by A we have -Au (t) + v(t) iii L I(), where v(t) is the

solution of P* with respect to the initial datum v0  0 -Au 0, Therefore v(t) = -Au(t)

for any t > O. .

Remark 1, Another rectularity result follows by usinq different methods. Precisely if

S(H2()) * H (0, ýI 0 on a, and u0 GH M(0 ) H2 lM) then the weak solution u of

(1) verifies u 9 Lo(O," % H2 (0l)) (see Remark IT. and Theorem 11.13 of Brezis 151). It

( in clear that Theorem I improves Brezis' result because it can he applied to a wider class

of obstacles and initial data (for instance when *(x) ) 8 > 0 on 0 for some 5).

supplementary hypotheses allow us to find a more reqular solution of (1).

Theorem 2. Assume * Q C2 (U), Y ) 0 on V. Let u0 9 H0 () be such that AU0 Q L"(O).

Then the weak solution u of (1) satisfies

'((0,N) x n) r L(0,m 2()and Au(t) Q L"(n) a.e. t > 0

To prove Theorem 2 we consider (1) (or equivalently P with 8 qiven by (5)) as an

Abstract Cauchy Problem on L%1 (), i.e.
I- + aC8 0 in .0(0), on (Ott)

dt

(16) 71

C bheinq the orerator on r7(0) qiven by

D(C) - {W 4; L'(A) r) H(01) aAw Q () Min{'1,Aw) 9 Lw(0))
0

(17)
Cw - -Min{(*,Aw} if w 9 D(C)

The two results stated below are needed for the Proof of Theorem 2 the first one beinq

Ahown in the Appendix 3.
9 H1 () h such ,,that

Propositior% 2. Aaa'am^ *1 Q C
2 f) on T.Lot UnS (0)bsuhhe

A PO 1(01). Thpn there uxistp S 6 C(rO,M) L (0) uninue T. (n)- seminroup solition

0I

-0-.



of (16) (or P). Moreover u 9 W ((O,') X 0) ) H2(O, H
2

(n))) a

"A Q tV (lO,-f S).

Lemma 3. Let h 1 )(1) r) D(C). settinq c (I + XC)- b, then C a (I + XB)) b, for any

X > o.
Proof. From the definition of c it follows that

c(x) - AMin{*(x),Ac(x)1 - bMx) on S1

C(x) . ) on 3' .

i As c - b Q K (hecause c 9 D(C)) it is easily seen that -c 9 a(c - b) proceedino a.

in Lemma 2. *

Proof of Theorem 2. It is enough to see that the weak solution u of (1) coincides with

the L (n) semiqroup solution, u, of (16) corresponding to the initial datum Uo 0 U

Without loss nf generality we suppose u 0 G D(B). RV definition u(t) - lim u (t) where

u • (t) are piecewise constant functions given by u (t) n for kX 4 t < kk + 1)A
n n k n

h G D(C), satisfying
k

n n S....+ ohý 0 k 1- ,...,n
n

h 0 = u0

(or enuivalently h k (T + .nC- u 0) when n > 0 is such that X - 0. Thanks to

Lemrn 3 it is known that b) = (I + X) nu On the other hand, B being m-accretive in
k n 0

1 1
HI(0), u(t) lir u (t) in H (0) and u(t) u(t) holds. *

n~cm

63. COMPARISON RESULTS.

The following comparison results will be used in the next section under the present

formulation which is not the most qenpral one that we could consider.

Let us start with two lemmas.

-9-



Lemma 4. List eL 2 1(A) with &. a... on f and let uo 9 H(0). Set h(t,x,T,v)

be the solution of the heat equation *1
ht =Ah onn (T,-) X A I

1 h =0 on (t,,) x 8"

h(nx) = v(x) on 0 a

Then if u is the weak solution of (1) we have

(19) u(tox) Cx tn{Uo(x) + t*(x),h(txO,u 0 )} a.e. x 9 0 and t > 0

Proof. By the regularizing effect (10) we know that for any t > 0, u(t) 6 D(B) and so
F I du du

d Mt) K i.e. I) aMe. on A. Inteqratinq on the t-variable it follows I

u(t) - u0 t*(*). To show the inequality u 4 h let 9 C L (0,0 : H (A)) be such
du

that C(t,.) 0 a... t > 0 and x Q 0. Then v -2 - C K and substituting in (2)
dt

we have

f ut'Cdx + f grad u-qrad(v - u )dx 4 0
0 t

On the other hand

f hte dx + f grad hegrad 4dx -0.

Then choosing C - (u - h) and substracting the above expressions we obtain

-2 dt (u - h)+lL2 + f qrad(u - h).grad(u - h)+dx 4 0 .
L (A) A

+ +
So I(u - h) (t)0L2 (u - h) (0)1 2 holds which finishes the p;.oof. n

L2(fl) L (fl)

2 1Lemma 5. Assume Q 'L (A), * 0 on 0 andi u 0 i G H)o1f1 i = 1,2. Then if ui i_3

the weak solution of (1) corresponding to u 0 , 1 , it follows that

SI(u (t) u2 (t))IL 2 M I(u - u )11 2 L 9) (0,1 u0,2 L, (f)

and

-10-
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+01)LI
E(Ul(t) " u2(t))I < I(Uo' - U )+i

1 2 L 2 (0) 0,1 o,2) L2(0)

In particular when u ), 0 (reap. u0 4 0) a.e. on 0 we have u(t) ) 0 (reap.0 __
ult) 4 0) a.e. on n and t > 0.

Proof. Immediate from the proof of the previous lemma takinq h(t,x,0,0) i.e. h 2- 0. a

Remark 2. Better comparison results could be obtained using the fact that P is "well

posed" on L (0) under supplementary hypotheses (on * and u0)

The two following results are derived from the m-accretiveness in H (A) of the
0

Soperator B as well as the theory of Variational Inequalities.

Proposition 3. Let 9i 6 L2 (0) with •ib 0 a.e. on 0 for i = 1,2. AssumeI-o
u H 1(0) and let ui be the weak solution of (1) corresponding to the obstacle V..

0 0 _ _

1•: ~~~Thent •1<0 ~ .o mplies u (t,x) Ic u2(t,x) a.e. on (0,-) x 11.

Proof. Taking into account the definition of the H0 (0) semiqroup solution it is enough

to see that when uCx) W H1 (2) verifies0

i

* 1 2
(with f 9 D(Bi)) then u1(x) W u (x) a.e. x Q 0. Proceeding as in Appendix 3 (Lemma

A.8) we know that the functions ui a ui- f are solutions of the Variational Inequality

qiven by u. 6 K. = {v 9 H (0) . v(x) 4 A*.(x) a.e. x Q 01 and
v-)dx + If f(v - u)dx > (Af,v - 1)

grad u~grad(v - ud 'n-UHlnxlg

V v G K Therefore from Proposition 1.9 of Prezis [51 we get u1 4 u2 a.e. on 0 and

the proof ends. n

Proposition 4. Let * Q L2 (0) with * ) 0 a.e. on 0. For i = 1,2, let u G H (0)
0,j 0

and denotes by ui the associated weak solution of (1). Then -Au0,I 0 4 -Au0,2 iin

D(10) implies -Au1 (t) 4 0 < -Au 2t) in D'(IM) a.e. t > 0.

Proof. It is easy to see that v = -Aui, i = 1,2, are the H- (0) semiqroup solutions

of the Abstract Cauchy Problems

-11-



A

I + Ev a 0 ind H(f), on (0,i)

(20) v
lv(O) ,,vo

r0

corresponding to the initial data v- -Au 0 , where E is the operator in HI (a)

defined by

(21) E (-&)*B*(-A)-1
H-1

(we recall that E is an m-accretive operator on H (11), see Appendix 2). Then it is

enough to prove that when vi(x) W HI (0) verify

vi + A•v1 " on H(() ,()

(q Q H-1(f), being ( g2  in D'(11) and g or g2 identicial to zero) then

1 2v < v in D'(I). Arquinq as in Appendix 2 it is easily seen that the function

hi(x) = -Min{*(x),-ui(x)} is the solution of the Variational Inequality

h G K* ( (w G H (11) : w(x) P -4(x) a.e. x G a} and
i 0

A f grad hi~grad(w - hi)dx + f hi(w - hi)dx ) (qg,w - h1) -1( 1
S1 0H (A)xH 0(0)

1 2V w 9 K*. Therefore, by applying the Corollary 1.5 of Brezis (5] we get h ( h a.e. on

n. Finally the result follows from the fact that - 0 implies h - 0. A

Remark 3. Retter comparison results about -Au(t) could be obtained using the fact that

P* is well posed on L (0) under supplementary hypotheses (on ' and uo). The

situation is similar to the one in Remark 2.

This section is finished with a curious and very useful estimate which is, out of

slight modifications, a particular application of the abstract result of Senilan-Diaz (31.

Proposition 4. Let 9 C H (0) with ' ) 0 a.e. on f and (- 9) C L2 (9). Assume

u H(G ) such that0

-Au G D+(A) (D+(A) = [w 9 D(A) Aw • 01)
0

Then

(23) h(tx;0,v0 ) C -Min{P(x),Au(t,x)1 a.e. (t,x) Q (0,') x n

where v0 = -Min{lCAUO1

-12-
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+I
Proof. For a > 0 let a +0 9 D(A) be such that I-Au - aoI < a. Consider :

0 01)'
Proo. Fo > oletLI (0)

nv

a 9 D(A) verifying

n
aI +.AnAa - a0  for any n - 1,2, ...

"lay the T-accretiveness of the operator A we have

a n
(an0 - a1 + a0 + 0 0

1 0 1 (1) 0n ()

L
if z n Aa so a n a and also a n D (A). Arquinq by induction there exists

0 0 1 0 1

n + n n . .
a 9 D (A) such that a0 a a a . a a and
k 0 1 2k

n n
(4k--I + A1 - 0 k - ,2,.,.,=n( 24) +n

n

Set = Min{4,_an} Then from (24) we haveSet wk

r n n n

where - a + w . It is easy to check that
k k-1 k k

n= a + Min{_,-an - ak - Min{ ,-a ) Min(*,-an
fk ak- i n{ k-i I k Mn* k k_-I

n n

• -M in{( ,-a -k -1

on the other hand, if we denote h(t) = h(t,*;O,v0 ) then h(t) lira h (t) with

h (t) dn if A k ( t < X (k + 1), the elements dn G {w W0,(0) Aw L (f)) and
,n k n0

satisfy

n n
i k a "k-i - 0 in L(), k=1,2,...n

(26) 
nt

do =v 0 Vn G N•
0O 0

11sinq the T-accretiveness of the operator -A on L (0) (i.e. the operator A given by 4

(12) when O(x,r) = r) we deduce from (25) and (26)

-13-



n n +n n +n +
(27) (dn w'n ( 4 l(d- f) ( "° w I

k 1 I k I. kc 1 0 0 1
L LL (

- Now by the Crandall-Liggett Theorem ((11I) and the proof of Theorem 1 we know that if

v(t) = -Au(t) then v(t) = lim U (t) where u (t) - ak for kX 4 t <(k + 1)X and
n+6 nn n n

for T fixed we have the estimate

wemax max Iv(t) a L a + (Xn)/2To1A Minl*,a0)i(Sk-1,...,k(n) t(;[kAn,(k+1)AnL (0)L1a

Swhere X(n) is such that -kn)r Tj < A B y the continuity in L1(a) of tlkd

H transformation w + - Min(*,-wJ we have

max max I- Min{*,-v(t)} - w ( p(n,a)k-1,...,k(n) tGfkAn,(k+)An ) 1I()

np n

with lim lir P(n,a) - 0. Then, we obtain (23) passxnq to the limit in (27) when n +
a+" n+0

and a + 0. N

Remark 4. in Benilan-Diaz [131 it is proved that (23) is not true (in general) without the

hypothesis (22).

J4. ON THE ASYMPTOTIC BEHAVIOUR.

Our attention is fixed, at the moment, on the converqence of the weak solution u to

V" an equilibrium point of (1). It is clear that, in general, the asymptotic behaviour of

u depends in an essential way of u0  (for any fixed obstacle fl. The followinq result

improves that of Brezis in some particular casest

21Proposition 5. Let Q L (0) with * ) 0 a.e. on 0. Let u 0 9 H0 () and u be the

weak solution of (1). The followinq holds:

i) If -Au0 ) 0 in D'(11) then u(t) + 0 (strongly) in H0 (0) when

t + * where u. is a solution of (3).

ii) If -Au 4 0 in D'(n) then u(t) + u. (strongly) in H (0) when t +

where u. is a solution of (3).

Proof: i) By Proposition 4 -Au(t) ) 0 in D'(1). Then u(t) satisfies ut Au

a.e. t > 0 and the conclusion holds from the results aboitt the asymptotic behaviour for

-14-
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I

the linear heat equation. 1i) In this case -Au(t) ( 0 in D'(0) by Proposition 4.

Then it is easy to see that u is the solution of the problem

lu , t on (0x-) 1

ut -Au- 0 on ((t,x) ju (tx)j <LI
( (28) - Au 4 0 on ((t,x) u (tX) -(x)

U- Au 0 on ((t.x) : u (t,x) = -*(x)}
"t t

u 0 on (0,0 x Us

u(0,x) - u (x) on 210L , and so it is well known that u(t) + u. (stronc.'v) in H (0) (see [81). Finally, as
0

-Au. 4 0 in D'(Q), u. is a solution of (3). E

The next theorem is the main result of this Section and quarantees the stronqr
converqence of the solution to zero.

Theorem 3. Assume * 9 H2 (1) with $ > 0, A* ) 0 a.e. on Q and let u 0 . H0(1). Then

if •(X) > 0 a.e. x G A u(t) + 0 (stronqly) in HO0() when t + 1. If in addition

N(x) > 5 for some 6 > 0 then ut Au on (ToC) x L where T. (-C I ))2/N

and C a positive constant dependinq only on JIll.

Proof. is step. Assume * G C2 (O), 0 ; O, AO), 0 and u. 0 such that

h M -AU 9 L'(1). Set u and u belonqinq to H (a1) such that -Au o h and

-Au0,- a -h-• Let u+ and u- he the weak solutions of (1) corresponding to the initial

data, u,,+ and u 0 ,- respectively. By Theorem 2 and the T-accretiveness of A we know

that

(29) -Au_(t) < -Au(t) -Au +(t) in L (01), a.e. t > 0

From the Proposition 5 and the well known results on the asymptotic behaviour for the

linear heat equation we deduce that -Au (t) + 0 in L(02) when t + +m. On the other+

hand it is possible to find a Q H 0(1) with Au L9 ,(0) and such that -Au 4 -Au
00 0 0,-

a.e. on as well as -AG D+(A)(. Indeed, it suffices to choose v0 9 L (1) such

that 4 • Min(-',-Auo,-} and then 6i = (-A)- voo (We remark that in this case

Min(*,Aa0} = 4' so A(-AaiO) = ) 0). Therefore Proposition 4 shows that

(30) h(t,x;O,-4(x)) 4 -Min{,P(x),AG(t,x)) € -Min{P(x),Au (t,x)} 4 0

-15-
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where 6 is the weak solution of (1) corresponding to the initial datum 0 From the

results on the asymptotic behaviour for the linear heat equP.ion it is well known that

i) V t > 0 h(t,xl0,-l(x)) 9 L (a)

ii) there exists a positive constant C (only depend.ng on InI) such that

(31) t- 11 ( h't,x;0,-*(x)) 4 0 a.e. (t,x) a (0,") x Sf

Pstimates (30) and (31) shows that it *(x) > 0 a.e. x 9 A1 then Ait (t) + 0 in L (11)

when t * +0 and the L-rst assertion follows from (29) and the fact that

-Au(t) + 0 in L"(4) implies ,a(t) * 0 (stronqly) in Ht(i) when t + , On the other
0

hand, if *(x) ) 5 > 0, from (30) and (31) it follows that

-*(x) 4 -Au (t) < -AuMt

for t To T 'TO [C I4I1 1  2/N Then Min{t(x),4u(t,x)} Au(t,x) a.s.
01 0 L1 (SI

(t,x) e (• •) x 11 and the second assertion holds.
0

2 step. Take 0 9 C2 (A) with 9# 0 0 and A* ) 0 a.e. on A. Let u (2 H0(0).00

Consider u0,n 9 H 0 ) with -Au0,n 9 L (0) and u 0 ,n * u0  in H110() when n + *. Then

if Un(t) is the weak solution of (1) of initial datum u it is known that

u (t) W u(t) in H (A) when n + 0 and so the first assertion follows from the firstn 0

step. Besides when *(x) > 5 > 0, one has (u ) A Au a.e. on (T0,00) x 11 with
n t n0

T0 . [C I•L()2/N Therefore by the "exponential formule" (see e.g. [71, corolary 4.4)

L (I
we have for t > TO

u(t) = lim (I + ; B) u(T0 )- lm (I + .B)¶m(lim un(T 0 ))

t -m t )-mu

- lim (lim (I + - u (To)) l urm (lim (I + I (-A)) .u )T
n- m mn nO m- n 0

= lrn (I + (-A))-mu(T

-16-



(we have identified -4 with the m-accretive operator on H (0) of domain
0

(zQHI(SI) t H (11))). Therefore the second assertion holds.
rd2 1

3 rd step. Let * Q H (0) with 0 ) 0, AI 0 a.e. on Q and u Q H (11). consider
0 0

Q C with71) with 0 such that 11I1 and *n + * in H2 (n) when•n • 2• ihAn )0shtatInl() n•

n + 0. Arguing as in the above step it is enough to prove that if un is the weak

solution of (1) corresponding to the obstacle *n then u (t) + u(t) (strongly) in
1n n

H 0(2) when n + 1. By an abstract result of the theory of evolution equations (see (7]
i0

Thec.-em 4.2) it is sufficient to show that

(I + XB )-z + (I + AB)- z when n + *, V X > 0 and V z 6 D(B) n DB(
n fl

"(an designates the operator B corresponding to the obstacle * n ). Setting

y - (I + ABn)- z and y - (I + AB) z and aeguinq as in Appendix 2 we know that
n n

"n -Y n z satisfies YnG Kn - (v Q H (A) :v(x) • ~(x) a.e. x Q 11) and

i~ ~ ~ ~ ~ ~ ~ ~qa ý vqa~ -K.Teb y the )eslt ;Pteter fVratoa ,eulte (anv thnk u)n n

S~ 0
V hnb h test of the theor of Variatio alIequa flte and toans t

the fact that + in H (9)) we obtain y + y y z (strongly) in H (0) whenII
n n 0,

Remark 5. The above result improves a previous; one of (15] concerning the case

*(x) - > 0 a.e. x 6 Co

When +(x) > 6 > 0 but without any additional regularity hypotheses we don't know if

the identification, after a finite time, between u and a solution of the linear heat

equation occurs or not. Nevertheless the following result shows that in this case the

asymptotic behaviour is not very different.

2Proposition 6. Let *l 9 L (0) with *(x) > a.e. on Q, for some 6 > 0, and

u Q H (0). Then, with the notation of the Lemma 4, we have
00

(32) h(t,x;To,U6 (T0,x)) < u(t,x) < h(t,x;o,u 0(x)) a.e. (t,x) Q (TO,=) X ai

where u6 is the solution of (1) corresponding to *(x) E 6 and T. is given in

Theorem 3. In particular u(t) + 0 (strongly) in LP(Q) for every

1 p & +m when t +00.

-17-
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Proof. From Theorem 3 u s (t,O) - h(t,.IQua(T0 O,)) with To a (C.Ili)2/N. Then

Proposition 3 and Lemma 4 lead to the estimate (32). So u(t) * 0 (strongly) in LP(n)

for every ¶It p 4 m.

We consider now (in some particular cases) the problem of choosing lim u(t) among
t+a

all the equilibrium points of (1).

Proposition 7. Let 416 L2 ( ) with 4 ) 0 a.e. on fl, and u0 6 H0(fl). Then the

following holdes

a) if u 0 ) 0 a.e. on 0, u(tx) - 0 a.e. x 6 {x a I U (x) - 0 and

- 41(x) n 0), V t > 0. Moreover lir u(t,x) - 0 (weakly) in H (0)
t+W 0

b) if Au0 C 0 in D'(M), u(t,x) - uo(X) a.e. x Q Nx a r, t(x) a 0) V t > 0.

Proof, a) Ry Lemmas 4 and 5 it follows

0 4 u(t,x) 4 U(X) u + t.*(x)
0I

On the other hand

0 4 u(t,x) 4 h(t,x;O,u 0 )

which implies that u(t,x) * 0 (strongly) in L2 (fl) when t + . Then if u. is the

weak limit point of u(t) when t + a due to the compactness of the inclusion

H 1 (0) C L2 (0) we deduce that u(t,x) + u, (strongly) in L 2(f0). Part b) is a
0

consequence of the fact that u(t,x) ) u (x) as it can be checked from the definition of

u. Then the conclusion holds by the Lemma 4. 8

Part a) of the previous result shows that if the measure of the set

{x C a 41(x) - 0) is positive then the second assertion of Theorem 3 is not possible.

Part b) gives a simple situation where '.m u(t) in not identically zero.
t+ea

Remark 6. The equation of problem (1) can obviously be written as

ut + Max(-Au,-*} - 0

and then it is similar to the so called Bellman's equatinn of Dynamic Programming (see e.g.

'1]). It would be interesting to know if our results can be proved (or improved) by

stochastic arguments.

Remark 7. In (8) the study of the asymptotic behaviour of the solutions of the problem

(28) is also proposed. Our methods remain still valid and its application is left to the

reader.
-1 8-
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APPENDIX 1. Basic Theory of Accretive Operators

Given a Ranach space X and an operator A t D(A) C X * Pm0 we call

u 9 C(10,") t X) a semiqroup solution of the Abstract Pquation

du
(A.1) + AU 0 on (0,10)

if there exists A > 0, A + 0 when n + 0 and a sequence na)- k = 0,1,... satisfyinq

n n

ak -ak-1
(A*2) + Aa• , 0, k = 1,2,...,n Q N

n

and such that the sequence un(t) defined by u (t) = if kA < t < (k+1).A verify

lu(t) - u (t) ( AN

Roughly (A.2) represents a simple implicit Euler approximation of (A.1) and we are

defining solutions of (h.1) to be limits of solutions of these difference approximations.

There are many criteria ensuring the existence of the X -approximate solution u
n n

being a simple one the followinq "ranqe condition":

(A.3) R(I + AA) D D(A) V A > 0

(see details in the survey article of Crandall [10]). The question of the convergence of

such W sequence lead to the notion of accretive operator.

Definition A.1. An operator A D(A) C X • P(X) is called accretive if

V [x,y1,[x,yv 6 A

(A.4) l(x - 4)I I lx - + X(y - 9)1 for all X > 0

If X is also a Banach lattice then A is called T-accretive if V[x,y1, [,9] G A

(A.5) l(x - W1 4 E(x - + X(v - •f)+I for all A > 0

where hb = max(h,O). Finally if A satisfies (A.4) and R(I + AA) = X V A > 0

A is called m-accretive.

proposition A.I. Let A he accretive (resp. T-accretive). Let u0 9 D(A). If there

exists an A n-approximate solutinn un 2f (A.1) Ruch that flu (0) - U o < An then there

(*)If X is a normal Banach latti,-p (i.. fu+ I < Iv+, and Iki•-1I 4 Iv-i implies

NUO 4 NlO) then any T-accretive operator is cilso accretive.

-19-
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exists u Q N(rOe) a X) semiqroup solution of (A. I) surn that u(0) - uO, Moreover if

u and 0 are sesmiqroup solutions of (A.1) then

lu(t) - i^(t)l 4 Nu(O) - fu(O)I (reap. l(u(t) - q(t))+l 4 l(u(O) - C•(0))+I)

i.#. the application S(t)u0 " u(t) is a semiqroup of contractions on D(A).

This proposition is proved in (121 (reap. in r2I) for accretive (reap. T-accretive)
operators. In both works more sophisticated situations are also considered.

Let us introduce some notation that provides an alternative characterization ofU anceretiveness and ¶'-aceretiveness (often easier to verity in practice than (A.4) and

II
i ; (A.5)). For xty Q X, define

ili
I+ + X a+N

+ lx,4A y) - i nX I x + II- xl +

R + Xy '0

r (xyx y)t - up-- oIx÷ , -sup

and also

+
+ IN + Ay) -x I 0 (rI.(x + XYv I y) I 0

T (x,y) .inf A satisfie(xst) t sup )

Swhen X is assumed to be a Banach lattice. It is easy to check that A is Excreive

(reap. T-accretive) if and only if

T(x - i,y - )) ) 0 (reap. T+ (x - 0,y - j) ) O)

for all [x,y],[x,y] Q A. If A satisfies the stronger assumption

o(x - R,y - >) 0 (reap. a (x - iy - ) )O

for all rx,y1,[x,91 9 A, A is called stronqly accretive (reap. strongly T-accretive). It

is well-known (see rio0) that a densely defined, linear and accretive (reap. T-accretive)

operator in a strongly accretive (reap. T-accretive) one.

The advantage of these alternative characterization is that for certain spaceq X the

above products are easy to compute,

-20-
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Lemma A.I. (c.f. Sato (191). Let 1 C RN

i) if X 0L0(1) for I < 1 <,

f fl -il'fq x

T +(fq) - O+(fq) to

ifI + I:j f 0f~'q~qdSii) if X LI(01

T (fq) - max{f a'gqdx, a Q L , a(x) 9 siqn+f(x) a.e.}

++S*(f,q) .min{f CL'adx, , Ct L2 , L ,(x) 9 siqn •(x) a.e.)

if L (S1

T (f,q) . max{lim ess sup[a(x)q(x) I x 6 Q(f,))],a C L ,Q(x) 9 Sign+f(x) a.a.}

+~ +

a (f,q) - min{lim ess inf[a(x)q(x) a x s nlfx)],a Q L ,Q(x) 9 eiqrn f(x) a.6.)

where n(f,X) = {x 6 n a If(x)I > Ifl - )} and

L

+ ( ifV I if v> 0I if v > 0
siqno(V) j , siqn (v) [0,1] if v 0

if v 4 0 0 if v< 0 U

When X is a Hilbert space of scalar product ( , ) it is easy to see that A is

accretive if and only if A is monotone (i.e. (x - xy - y) > 0 V [x,y),[;,7] C A). In

this case the classes of m-accretive operators and of maximal monotone ones coincide (see

r71).

-21-



APPE•rIX 2. The Prohlam P* (0 given hy (5)) in Well Msed on L1 (f) and H -14 ).

The main aim of thie appendix is to prove that P* in a well posed problem on L (n)

(when * 9 H i (fl), 0, (-A*)' 9 L 2( ) and 0is given by (5))l that is the statement of

Proposition 1.

4 ~21
Lemma A.2% Assume *Q 1. (n), 4i ) 0 a.e. on 0 and consider the operator A on L (M)

given by (12) i.e.

(A) -(W 9 L (l) I (xw(x)) Q W1 1 (n) and AB(x,w(X)) Q LI(0))
0

Aw a-AB(*,w(9)) if w 9 D(A)

[ Then A is T-accretive in L11A).

Proof. The operator -6 defined in LI(0) by D(-A) ( {w 9 w0 (n) I Aw a L (A)) is a

stronqly T-accretive operator in L1 (A). T7en for any u* 9 D(-A) and any G(x) 9 L(0)

such that 0(x) 9 sign u*(x) a.e. x Q n, we have

(A.6) f -Au*eadx ) 0 q

Now let tu,v],fui,O] 9 A (i.e. u,u 9 D(A) and v - -AB(x,u), v - -ABlx,u)). Then

u* O(.,u) - B(.,0) belonqc to D(-A). Takinq

1 if (u - OW)x) ) 0 and u*(x) ) 0

(0 if (U - u)(x) 4 0 and uw(x) < 0 or (u - 6)(x) < 0 and u*(x) - 0

then ON(x) 9 L (0) and c*(x) 9 sign"(u(x) - u(x)) • sign+u*(x). So

f (Au - A)a*dx 0

by (A.6), which shows the T-accretivenenr of operator A. 5

Our next step is to prove the range condition (A.5) which is only well known for

not depending on x (see Brezis-Strauss r9]). For it we begin with a technical lemma

Lemma A.3. Assume * to be a measurable function on n and let 0 given by (5). Then

V (A.7) B'(x,r) - r + Y(r + ij(x)) V r 6 O(W I(x,')), a.e. x 9 a

2being Y(r) the maximal monotone qraph of R defined by

-22-
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iI
(A.8) Y(r) = 0 if r > 0, y(o) * (-0,0] and Y(r) * * (the empty set) if r < 0 ,

Proof. If r > -*(x) it is clear that 8 1 (x,r) a r + Y(r + f(x)). it a 6 1 (x,r)

with r - -V(x) then a - r + (a - r) where (a - r) ) 0 and so (a - r) 9 Y(O).

Conversely if a - r + h (h Q Y(O)) then -Min{i(x),-x} = r - -*(x) and a Q 8 (x,r). N

Lemma A.4. Let 9 H (n) be such that ' ) 0 a.e. on n and A* is a measure with

(-A*)- 9 L2 ( ). Let 8 given by (5). Then the operator A is m-accretive in L (n).

More concretely, for all f Q L1 (0) there exists a unique u Q L (9) with

O(xu) 9 Wlq(a) (1 < 0 < N such that
0 N-1

(i9/u(x) - XAO(x,u(x)) - f(x) a.e. on 0'1 (A*9)

I(x01x)) = 0 on an

Proof. Set h(x) A 0(x,u(x)). Then u is a solution of (A.9) if and only if
1, -1

h 6 W (n), Ah 9 L 10) and -XAh(x) + 0 (x,h(x)) 8 f(x) a.e. x G 0, or equivalently

(by Lemma A.3)

-Ah(x) + h(x) + Y(h(x) + '(x)) 8 f(x) a.e. x 9 Q
(A.10)

I h = 0 on a3.

fue to the accretiveness of operator (-XA + I) on L (Q) and from the monotonicity of
Y we know that if h C D(-A) is the solution of (A.10) correspondinq to f L (Q) then

(A.11) If - (-,XAh + h)1 - [f - (-XAh + h ~l <if - F ~l LI(0)

(see Brezis-Strauss [9]). In particular, the coercivity of the operator (-AA + I) in

L (Q) implies that

(A.12] 01h - hiýl 1 I-AA(h - h) + (h - h)l 1 21f - fh for some a > 0

L (n) L () L ()

From (A.12) the uniqueness follows. To prove the existence of solution it suffices to

consider f beinq in a dense set of L (Q). Indeed, let hn (with -XAhn + hn G LI(0))

be the solution of (A.10) corresponding to fn and f + f in LI (Q). By (A.12) we haven n

aIh - h I 1 il-)A(h - h ) + (h - h )I ( 21f - f I
n s L1 ( ) n n m 1( ) n 1

(0) L () -23(-



and then h + h and -AAh + h ÷ -XAh + hy finally f -. (-XAh + h) Q Y(u + 4) since
n n n

Y is maximal.

Actually, when f Q L (A) and h G H (0) is the solution of the Variational
04

Inequali tv

h(x) > -*(x) a.e. x 6 0

(A.13) -X~h + h 0 f a.e. on

(h +4 )(-XAh + h - f) = 0 a.e. on A

h =0 on M0

it is well known (due to the hypothesis on 4)that h 9 42 (1) n n (see Brezis
0

{(51). •terefore h satisfies (A.1O). Finally the function u = f + XAh - X is such that

h(x) G 8(x,u(x)) a.e. x 6 n and so u is the solution of (A.9). (The regularity on

.(x,u(x)) come from the fact that AO(*,u(*)) G L (0), see [91). U

Lemma A.5 Assume 4'" and 8 as in Lemma A 4. Then - (0) L(A).
___,.___ __. __________ () -L()

Proof. It.is enough to see r~m) c 5ThTL () Take f G L'(0) and for each X > 0 let

z G H2.(A) n [1 (0) be the solution of (A.10). By Theorem I.1 of Brezis (51 we get

. (A.14), IAz .I 4 Iflr2 + C.l(-XA )- 2

,L2(0) L(Q) L01)

with C independent of X.. Theref-re converges weakly in H2 (9) and then

.strongly in L2 (), when A�+ 0. But [Xz,) 0 in L2 (M) Vecaume

Iz I C IfI (by the comparison results) and then 8%12 4 C',' C'
L () L (0 (0)

independent of X (because' -41(x) C - z1 (x) < z Wx) a.e. x G 0). Setting

Y•x)= f(x) + AzW(x) it is clear the y,(x) P S (xz W) a.e. x Q 0 (see Lemma

A.3), yX 9 D(A) and y, converges (weakly) to f in L2 (ýi) when -A. 0. Finally from

(A.14) we deduce that limui 1 Y 1 2 = ( and then yA converqjes (stronqly) in

L2(Q). .

The proof of Proposition 1 is now a consequence of Proposition Al and Lemmas A2, A4

and AS. Problem P* is also well posed on the space H' ($):

Lemma A.6. Assume ý Q L (0), 4 ) 0 a.e. on C. consider the operator E on H- (a)

given by (21), i.e.

-24-
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E - (.A).B(-A) -1

Then E is m-accretive in H-(a).

Proof. Recallinq that the scalar product in H'1() - (Hl(0))' is given by
0

(f,cj) H_ ((-A H,-)g x

then if [x,yJ,[x,] G E

(x- - - ((-A)- (x - x),(-A)-y - 1 1 0
H XH H 0 M

Sbecause [(-)- x,(-A)- v, r -A)-,(-A)'ly e B. Analoqously R(I + AB) Hl(n) implies

R(I + XE) - H'
1 (), V X > 0 • u

The following unpublished result of A. Damlamian characterizes the operator E when

Q HI (01).
0

Proposition A.2. Assume ' G H (n) with i 0 ae. on 0. Then E = 34, where 0 is

the convex, l.s.c. function defined in H-1 () by iI

1+ -2 1  + _i-1(u + u) 2 H 1 (0)

(2 ) H IM0 L2 20)

((u))=

otherwise.

Remark A.1. When '(x) 6, the function v = v + 6 (v solution of P*) coincides with

the solution of the one-phase Stefan Prohlem

LH

.v ON(v)= 0 on (0,) X 1
'• '•v = ~on (o,-) x all

"(v(,) on Vo() +6 on Q

where O(r) = 0 if r < -6 and O(r) = r + 5 if r ) -> . In this case, formulation (1)

coincides with the one Given in (201 (see also the Appendix of 13)).

-25-
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APPENDIX 3. The Problem P is Well Posed on L1(n).

The accretiveness in b (0) of the operator C given in (17), i.e.,

D(C) - (w a L"(0) n K (Q)l : 6w L*(A), Min({,Aw} 6 La(0)})
-j0

Cw - -Min{*,Aw} if w Q D(c)

is an application of the abstract result of (4) or 117). Here we show it directly.

ii 2Lemma A.7. Assumed 9 C L2(Q), > > 0 a.e. on 0, the operator C is T-accretive in

Proof. Let 1u,v1,[6,;1 9 C. Let us assume that W - (u -( )U • 0. Then if 0 is given

by (5) T+(W,O(X,-AU) - O(X,-AU)) ) 0 because otherwise for some A > 0 one would have

""(x,-Au) - O(x,-AG) < 0 a.e. on Q(w,X). From the monotonicity of B(x,*) we would

deduce that -e(u 0 a.e. on A(wX). But (u Owl in the boundary of
L

fl(w,A) and the application of the maximum principle would lead to a contradiction.

About the range condition one has:

Lemma A.8. Assumed MPG C2 (1T) with ' ) 0 on 1, C satisfies the range condition
(A.3). More exactly, for all f 6 L (Q) C H'(Q) such that Af Q L (1) there exists

0

u 6 D(C) solution of

(A.15) u + Aru -f if A~ > 0

Moreover

(A.16) Iaul < c(14fl + •1 )

L (n) L (0(0)

fcr some constant c independent of A and f.

Proof. Set u u - f. Then it is easy to see that u is a solution of (A.15) if and

only if U 6 (a) AZ L() 9~ L'(A) and usatisfies -Au(x) -
1 x-~ ~)a tifwx

0

a.e. x 6 0, or equivalently (see Lemma A.3)

+ ux + ) -- "Y((x) - a Af(x) a.e. x 6 0

(A. 17)
u=0 on a•j 'I

-26-
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where Y is the qraph given by (A.8). Problem (A.17) coincides with the Variational

Inequality i
I

u(x) 4 )*(x) a.e. x Q 11

S-A u + , - A f a . e . o n A 
:

(A. 18)

2 : + : Af) . 0 a.e. on

j u = 0 o n ) .

1 It is well known that under the assumption 4 6 C2 (T), 4 ) 0 on I there exists a oxniqueI t

u. 6 H (0) solution of (A.18) satisfyinq Au Q Lm(•) and j

IXAulI ( C(IAAfl + I 1.AOI (see (181). Then u G D(C) and it verifies

L(f) L"(0) L (0)
(A.15) and (A.!6). 

A

Problem P can actually he "solved" in terms of the Proposition 1. indeed, when

6 U D(C), by Proposition A.1 and Immas A.7 and A.A there exists a unique uGL (Q)

semigroup solution of P. Finally the regularity of u follows from Theorem 2 of Benilan-

Ha (41 (Notice that the hypothesis R(C(x,*)) = R a.e. x 6 0 made in (4] is only used to

prove the existence of the L (0) semiqroup solution).

Acknowledgments. The author is qreatlv indebted to Alain Damlamian by his useful remarks

and suggestions on a preliminary version of this paper.
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